[ Home | GAUSS | GAUSS Engine | GAUSS Apps | 3rd Party Apps | Keywords Index ] Constrained Maximum Likelihood Constrained Maximum Likelihood (CML) solves the general maximum likelihood problem subject to linear or nonlinear and equality or inequality parameter constraints. Key Features
Major Features of CML
CML uses the Sequential Quadratic Programming method in combination with a number of user-selectable descent methods and several selectable line search methods. Choices include:
Example CML is especially suited for models with complex constraints on parameters. Because CML provides for general nonlinear constraints, it is possible to enforce any type of constraint. The GARCH model requires a number of inequality constraints to ensure the stationarity of the model.
Here a TGARCH(2,2) model is estimated for a well-known stock index, measured monthly. The residuals are assumed to have a Student's t distribution in order to measure the "fatness" or platykurtosis of the tails of the observed distribution. The extent to which the "NU" parameter (the "degrees of freedom" parameter in the t distribution) is greater than 2 indicates the amount of platykurtosis. In this case, the index is clearly platykurtotic. The "delta2" parameter is on the constraint floor. A Lagrange multiplier is available for testing that the constraint is the same as the gradient, both equalling .0011. This result, plus the fact that the lower confidence limits of the "alpha" parameters are on the constraint boundary, suggest that a TGARCH(1,1) model might be a better model. Here are the TGARCH(1,1) model estimates: The likelihood ratio statistic for testing the equivalence of the TGARCH(2,2) and TGARCH(1,1) models is .4478 (=265*(2.91808-2.91639)). It is statistically significant at the .05 level. The likelihood ratio of the TGARCH(1,1) over the GARCH(1,1) model, in which the errors are assumed to have a Normal distribution, is 9.9665 with 1 degree of freedom. We thus accept the TGARCH(1,1) model under the rule of parsimony over both the TGARCH(2,2) and GARCH(1,1) models. The likelihood ratio statistic for the GARCH(1,1) model over an ordinary least squares model is 75.2043 with 4 degrees of freedom, which is highly significant and is strong evidence for the GARCH specification of the stock index. Here are kernel density plots of the distribution of the coefficients of the GARCH(1,1) model from a bootstrap:
CML provides for a variety of methods for statistical inference. Among them are the usual standard errors and t-statistics, confidence limits by inversion of the Wald statistic or the likelihood ratio statistic, Bayesian limits by the method of weighted likelihood bootstrap, as well as the usual bootstrap method. Platform: Windows, LINUX and UNIX. |